127 research outputs found

    Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    Full text link
    Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in the planetary signal by covering liquid water clouds. Here, we investigate the strength of the rainbow feature for exoplanets that have liquid and icy water clouds in their atmosphere, and calculate the rainbow feature for a realistic cloud coverage of Earth. We calculate flux and polarization signals of starlight that is reflected by horizontally and vertically inhomogeneous Earth--like exoplanets, covered by patchy clouds consisting of liquid water droplets or water ice crystals. The planetary surfaces are black. On a planet with a significant coverage of liquid water clouds only, the total flux signal shows a weak rainbow feature. Any coverage of the liquid water clouds by ice clouds, however, dampens the rainbow feature in the total flux, and thus the discovery of liquid water in the atmosphere. On the other hand, detecting the primary rainbow in the polarization signal of exoplanets appears to be a powerful tool for detecting liquid water in exoplanetary atmospheres, even when these clouds are partially covered by ice clouds. In particular, liquid water clouds covering as little as 10%-20% of the planetary surface, with more than half of these covered by ice clouds, still create a polarized rainbow feature in the planetary signal. Indeed, calculations of flux and polarization signals of an exoplanet with a realistic Earth--like cloud coverage, show a strong polarized rainbow feature.Comment: accepted for publication in Astronomy & Astrophysic

    Pioneer Venus polarimetry and haze optical thickness

    Get PDF
    The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere

    Experimental phase functions of mm-sized cosmic dust grains

    Full text link
    We present experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3 to 170 degrees. The measured phase functions show two well defined regions i) soft forward peaks and ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions are in agreement with the observed phase functions for the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter sized-grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains

    The composition and size distribution of the dust in the coma of comet Hale-Bopp

    Full text link
    We discuss the composition and size distribution of the dust in the coma of comet Hale-Bopp. We do this by fitting simultaneously the infrared emission spectrum measured by the infrared space observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and 12 different wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be solar. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicron sized. We exclude the presence of large crystalline silicate grains in the coma. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is approximately 7.5%, significantly lower than deduced in previous studies in which the typical derived crystallinity is 20-30%. The implications of this on the possible origin and evolution of the comet are discussed. The crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner solar system by thermal annealing and subsequent radial mixing to the comet forming region.Comment: Accepted for publication in Icaru

    Scattering matrices and expansion coefficients of Martian analogue palagonite particles

    Full text link
    We present measurements of ratios of elements of the scattering matrix of Martian analogue palagonite particles for scattering angles ranging from 3 to 174 degrees and a wavelength of 632.8 nm. To facilitate the use of these measurements in radiative transfer calculations we have devised a method that enables us to obtain, from these measurements, a normalized synthetic scattering matrix covering the complete scattering angle range from 0 to 180 degrees. Our method is based on employing the coefficients of the expansions of scattering matrix elements into generalized spherical functions. The synthetic scattering matrix elements and/or the expansion coefficients obtained in this way, can be used to include multiple scattering by these irregularly shaped particles in (polarized) radiative transfer calculations, such as calculations of sunlight that is scattered in the dusty Martian atmosphere.Comment: 34 pages 7 figures 1 tabl

    The Spectral Signature of Dust Scattering and Polarization in the Near IR to Far UV. I. Optical Depth and Geometry Effects

    Full text link
    Spectropolarimetry from the near IR to the far UV of light scattered by dust provides a valuable diagnostic of the dust composition, grain size distribution and spatial distribution. To facilitate the use of this diagnostic, we present detailed calculations of the intensity and polarization spectral signature of light scattered by optically thin and optically thick dust in various geometries. The polarized light radiative transfer calculations are carried out using the adding-doubling method for a plane-parallel slab, and are extended to an optically thick sphere by integrating over its surface. The calculations are for the Mathis, Rumple & Nordsieck Galactic dust model, and cover the range from 1 μm\mu m to 500 \AA. We find that the wavelength dependence of the scattered light intensity provides a sensitive probe of the optical depth of the scattering medium, while the polarization wavelength dependence provides a probe of the grain scattering properties, which is practically independent of optical depth. We provide a detailed set of predictions, including polarization maps, which can be used to probe the properties of dust through imaging spectropolarimetry in the near IR to far UV of various Galactic and extragalactic objects. In a following paper we use the codes developed here to provide predictions for the dependence of the intensity and polarization on grain size distribution and composition.Comment: 29 pages + 21 figures, accepted for the Astrophysical Journal Supplement February 2000 issue. Some revision, mostly in the introduction and the conclusions, and a couple of correction

    Radiative transfer in very optically thick circumstellar disks

    Get PDF
    In this paper we present two efficient implementations of the diffusion approximation to be employed in Monte Carlo computations of radiative transfer in dusty media of massive circumstellar disks. The aim is to improve the accuracy of the computed temperature structure and to decrease the computation time. The accuracy, efficiency and applicability of the methods in various corners of parameter space are investigated. The effects of using these methods on the vertical structure of the circumstellar disk as obtained from hydrostatic equilibrium computations are also addressed. Two methods are presented. First, an energy diffusion approximation is used to improve the accuracy of the temperature structure in highly obscured regions of the disk, where photon counts are low. Second, a modified random walk approximation is employed to decrease the computation time. This modified random walk ensures that the photons that end up in the high-density regions can quickly escape to the lower density regions, while the energy deposited by these photons in the disk is still computed accurately. A new radiative transfer code, MCMax, is presented in which both these diffusion approximations are implemented. These can be used simultaneously to increase both computational speed and decrease statistical noise. We conclude that the diffusion approximations allow for fast and accurate computations of the temperature structure, vertical disk structure and observables of very optically thick circumstellar disks.Comment: Accepted for publication in A&

    Photometric Light Curves and Polarization of Close-in Extrasolar Giant Planets

    Get PDF
    The close-in extrasolar giant planets [CEGPs], \ltorder 0.05 AU from their parent stars, may have a large component of optically reflected light. We present theoretical optical photometric light curves and polarization curves for the CEGP systems, from reflected planetary light. Different particle sizes of three condensates are considered. In the most reflective case, the variability is 100\approx 100 micromagnitudes, which will be easily detectable by the upcoming satellite missions MOST, COROT, and MONS, and possibly from the ground in the near future. The least reflective case is caused by small, highly absorbing grains such as solid Fe, with variation of much less than one micromagnitude. Polarization for all cases is lower than current detectability limits. We also discuss the temperature-pressure profiles and resulting emergent spectra of the CEGP atmospheres. We discuss the observational results of Tau Boo b by Cameron et al. (1999) and Charbonneau et al. (1999) in context of our model results. The predictions - the shape and magnitude of the light curves and polarization curves - are highly dependent on the size and type of condensates present in the planetary atmosphere.Comment: 33 pages, accepted by Ap

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
    corecore